Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper 1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front. We argue that this spatial pattern reflects a temporal state shift in the deep Critical Zone. Chemical weathering at depth, surface particulate deposition, and tectonic forcing drive landscapes away from an initial state with minimal topographic dissection, large vertical hydraulic conductivity, abundant lakes, and muted hydrographs toward a state of deep fluvial dissection, small vertical hydraulic conductivity, few lakes, and flashy hydrographs. This state shift has major implications for regional water resources. Drill hole temperature profiles imply at least km of active groundwater currently stored at the Cascade Range crest, with discharge variability a strong function of bedrock age. Deeply circulating groundwater also impacts volcanism, and Holocene High Cascades eruptions reflect explosive magma–water interactions that increase regional volcanic hazard potential. We propose that a Critical Zone state shift drives volcanic landscape evolution in wet climates and represents a framework for understanding interconnected solid earth dynamics and climate in these terrains.more » « lessFree, publicly-accessible full text available January 21, 2026
-
Rising atmospheric carbon dioxide (CO 2 ) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO 2 and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated CO 2 marine environments, widespread biological impacts of human-driven ocean acidification have been posited, ranging from changes in organism physiology and population dynamics to altered communities and ecosystems. Acidification, in conjunction with other climate change–related environmental stresses, particularly under future climate change and further elevated atmospheric CO 2 levels, potentially puts at risk many of the valuable ecosystem services that the ocean provides to society, such as fisheries, aquaculture, and shoreline protection. This review emphasizes both current scientific understanding and knowledge gaps, highlighting directions for future research and recognizing the information needs of policymakers and stakeholders. Expected final online publication date for the Annual Review of Environment and Resources, Volume 45 is October 19, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
null (Ed.)Abstract. Northwestern Alaska has been highly affected by changing climatic patternswith new temperature and precipitation maxima over the recent years. Inparticular, the Baldwin and northern Seward peninsulas are characterized byan abundance of thermokarst lakes that are highly dynamic and prone to lakedrainage like many other regions at the southern margins of continuouspermafrost. We used Sentinel-1 synthetic aperture radar (SAR) and PlanetCubeSat optical remote sensing data to analyze recently observed widespreadlake drainage. We then used synoptic weather data, climate model outputs andlake ice growth simulations to analyze potential drivers and future pathwaysof lake drainage in this region. Following the warmest and wettest winter onrecord in 2017/2018, 192 lakes were identified as having completely orpartially drained by early summer 2018, which exceeded the average drainagerate by a factor of ∼ 10 and doubled the rates of the previousextreme lake drainage years of 2005 and 2006. The combination of abundantrain- and snowfall and extremely warm mean annual air temperatures (MAATs),close to 0 ∘C, may have led to the destabilization of permafrostaround the lake margins. Rapid snow melt and high amounts of excessmeltwater further promoted rapid lateral breaching at lake shores andconsequently sudden drainage of some of the largest lakes of the studyregion that have likely persisted for millennia. We hypothesize that permafrostdestabilization and lake drainage will accelerate and become the dominantdrivers of landscape change in this region. Recent MAATs are already withinthe range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions inscenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions.more » « less
An official website of the United States government
